What is ECHO?

- **Extension for Community Healthcare Outcomes**
 - Started for lack of access to HCV expert care in rural New Mexico
- **Key concepts**
 - Amplification/Force multiplication
 - Limited access to experts → Train regular participants to be experts
 - Video conferencing for tele-mentoring → "move knowledge, not people"
 - Case-based presentation
 - Sharing knowledge and best practices
 - Tracking data for evaluation
 - Touching 1 billion lives by 2025
Stewardship ECHO Objectives

- Create a multi-state network of AS colleagues
- Evaluate/grow/improve ASPs
 - Facilitate and mentor
 - Tailor to local needs
- Discuss AS ideas and challenges
- Meet regulatory standards
- Keep up to date on AS literature
- Prevent/slow antibiotic resistance
The road so far was EASIE...

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/17/17</td>
<td>- Intro to EASIE</td>
</tr>
<tr>
<td></td>
<td>- Overview of ASP regulatory requirements (plus AFH survey experience)</td>
</tr>
<tr>
<td></td>
<td>- Site update/project example – American Fork meropenem MUE</td>
</tr>
<tr>
<td>11/28/17</td>
<td>- System stewardship update (pharmacy)</td>
</tr>
<tr>
<td>1/31/18</td>
<td>- Asymptomatic Bacteriuria - cases</td>
</tr>
<tr>
<td>2/28/18</td>
<td>- System stewardship update (physician), Intermountain restructure</td>
</tr>
<tr>
<td>3/28/18</td>
<td>- Update on C.diff diagnostics</td>
</tr>
<tr>
<td>4/25/18</td>
<td>- Role of front line nurses in antibiotic stewardship</td>
</tr>
<tr>
<td>5/23/18</td>
<td>- SSTI Care Process Model update</td>
</tr>
<tr>
<td>6/27/18</td>
<td>- Site update/project example – Cassia surgical prophylaxis audit</td>
</tr>
<tr>
<td>8/22/18</td>
<td>- Site update/project example – Logan rapid diagnostics protocol</td>
</tr>
<tr>
<td>9/26/18</td>
<td>- Site update/project example – Riverton ED culture call backs</td>
</tr>
<tr>
<td>10/24/18</td>
<td>- Pneumonia update – Duration, DRIP score, de-escalation</td>
</tr>
</tbody>
</table>

Transition to EASIE ECHO:

We want to hear from you!!

Patient case presentations

- Local sites present
 - Cases identified through daily AS activities → presented later for larger group
- Alternative – speakers present

QI project presentations

- Project identification (together with ID Tele ahead of time)
 - Identify goals/outcome measures, key barriers, data needs
- **Initial presentation**
 - Project logistics/design, feedback on baseline data, overcoming barriers, other ideas
- **Follow-up presentation**
 - Results/outcomes, lessons learned, future directions
EASIE ECHO Curriculum
We want to hear from you!!

• AS Overview
 • Regulatory requirements/updates
 • How to meet, experience with surveys
 • Updates on abx use/resistance data
• System communication/updates
 • iASC, corporate updates
 • CPMs
 • Dashboards
 • iCentra tools
 • Site updates

• “Case” presentations
 • Patient cases
 • QI projects
• Core ID topics
 • SSTI, PNA, UTI/ASB
 • C.diff
 • S.aureus bacteremia
• Core stewardship topics
 • Duration of therapy
 • Double anaerobic coverage
 • Abx allergies
 • PK/PD

Questions?
EASIE ECHO: November 2018

Blood Culture Interpretation and S. aureus bacteremia

Infectious Diseases Telehealth Service

Todd J. Vento, MD, MPH, FACP, FIDSA (Med Director)
John J. Veillette, PharmD, BCPS (ID Pharmacist)

Objectives

1. Review recent cases w/positive blood cultures at SCHs*
2. Review significance of positive blood culture results
3. Highlight important clinical issues associated with S.aureus-positive blood cultures/bacteremia

* SCH: Small Community Hospitals
Your nursing staff says to you:
“we have a new patient with sepsis in Room 1”
“we got 6 blood cultures for you already”

Q: What do you want to know about the blood cultures?

Positive Blood Culture Interpretation:
Recent Small Community Hospital (SCH) Cases
SCH Case 1

30 y/o F with PMH gastroparesis with J-tube + Hickman catheter on home TPN presents to ED on Day 1 with N/V, abdominal pain
- WBC 10, T 37, HR 98, RR 20, BP 117/86; blood cultures drawn x 2 sets; discharged off abx

<table>
<thead>
<tr>
<th>Micro Data (date of result)</th>
<th>Results Callback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 2</td>
<td></td>
</tr>
<tr>
<td>Set 1 (peripheral) – 1/2 GPC clusters</td>
<td>Day 2 “Please call patient - advise of positive cultures - if currently ill, have her return here - otherwise she must follow up with PCP tomorrow”</td>
</tr>
<tr>
<td>Set 2 (Hickman) – No growth</td>
<td>Day 3 “Patient followed up with PCP and is feeling better”</td>
</tr>
<tr>
<td>Day 5</td>
<td>Day 6 “Likely contamination. Please call and check on patient. Have her f/u with PCP or return if still symptomatic.”</td>
</tr>
<tr>
<td>Set 1 (peripheral) – 1/2 CoNS</td>
<td></td>
</tr>
<tr>
<td>Set 2 (Hickman) – No growth</td>
<td></td>
</tr>
</tbody>
</table>

Question

What percentage of time does Coagulase-Negative Staphylococcus (CoNS) represent TRUE bacteremia?

Answer: 10%

However,…a few thoughts about pre-test probability…

Pien et al., Am J Med 2010
SCH Case 2

60 y/o F with PMH: lymphoma, chemo-induced gastroparesis on TPN via **indwelling port** presents to outpatient clinic on Day 1 with subjective fevers
- T 37, HR 90, BP 113/71; WBC 6,
- blood cultures drawn x2 sets; sent home off abx

Micro Data (date of result)

<table>
<thead>
<tr>
<th>Day 2 (AM)</th>
<th>Interpretation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 1 (L peripheral) – 1/2 GPC clusters</td>
<td>Continue to follow</td>
</tr>
<tr>
<td>Set 2 (R peripheral) – No growth</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 2 (PM)</th>
<th>Interpretation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 1 (L peripheral) – 1/2 GPC clusters</td>
<td>Continue to follow…higher suspicion of true bacteremia</td>
</tr>
<tr>
<td>Set 2 (R peripheral) – 1/2 GPC clusters</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 3</th>
<th>Interpretation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulase-negative Staph, 4/4 bottles</td>
<td>Bacteremia highly likely (or confirmed?); Admit patient for workup, repeat BCx</td>
</tr>
</tbody>
</table>

Clinical course
- Readmitted to hospital, found to have **persistent CoNS bacteremia** → port removal

SCH Case 3

80 y/o F with COPD (3L O2 at baseline) presents to ED with dyspnea on Day 1
- T 37, HR 140, RR 26, BP 98/60; O2 sat increased > 90% on 4L; WBC 13,
- blood cultures drawn x2 sets; discharged on 5-day “Z-pak”

Micro Data (date of result)

<table>
<thead>
<tr>
<th>Day 2</th>
<th>Interpretation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 1 – GPC in clusters 1/2 bottles</td>
<td></td>
</tr>
<tr>
<td>Set 2 – GPC in clusters 2/2 bottles</td>
<td></td>
</tr>
<tr>
<td>ED calls patient, who says they are feeling better on the z-pak</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 3 and Day 4</th>
<th>Interpretation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sets MSSA, 4/4 bottles</td>
<td></td>
</tr>
</tbody>
</table>

Clinical course
- Day 7 Readmitted to hospital, found to have **persistent MSSA bacteremia** (D1, D4, D7, D8)
- Day 11 Decompensation → withdrawal of care
Which one is the true KING?

Staphylococcus aureus

S.aureus bacteremia

Highly virulent/invasive (10-40% mortality)

High risk of metastatic foci

- 1/3 of patients
- Especially if long-standing/community-onset
- Most common cause of endocarditis in U.S.

Attributable costs

- 10K-50K+ / hospitalization
- 4-12 days addl LOS

Clin Infect Dis 2009;48:S254-7

www.sidp.org
S. aureus Bacteremia: Common sources/syndromes

Sources
- Deep wounds/abscesses
- Catheter/device-associated infections
- IVDU
- Other primary sources: skin/lung

Syndromes
- Vertebral osteomyelitis/epidural abscesses
- Sepsis
- Infective endocarditis
- Embolic phenomenon
 (e.g. stroke, septic pulmonary emboli, kidneys*)

*S. aureus positive urine culture

SAB: treatment duration

It depends…
- Uncomplicated: 2 weeks
- Complicated: at least 4 weeks
- Endocarditis: at least 6 weeks

Duration start
- Date of negative blood culture and…
- Removal/control of source

Example:
- 7/14 positive blood cultures
- 7/15 no blood cultures drawn
- 7/17 negative blood cultures

Source: SIDPEC website IDSA MRSA Guideline: Clin infect Dis 2011 52(3)e18-55
SCH Case 4 – *S. aureus* in the Urine

- 60 y/o male seen in ED for fevers/chills/malaise/flank pain
 - Abnormal UA—sent home on levofloxacin
 - Urine Culture positive for MRSA (48 h later)
 - Pharmacist sees alert
 - Identifies bug-drug mismatch
 - Team asks for assistance w/ MRSA-UTI management

- What questions/concerns do you have?

- Clinical course
 - Pt contacted and found to have MS changes/clinical decline
 - Pt later admitted to IMC: positive MRSA-blood culture
 - Diagnosed with MRSA bacteremia secondary to empyema

S. aureus in the Urine

Risk factors for urinary source:
- **Urinary catheterization** → Foley, suprapubic, intermittent cath
- Invasive urinary tract procedure

Other mechanisms:
- Hematogenous seeding of the kidneys (*S. aureus* bacteremia)
 - Associated with high mortality!

Teaching point
- *S. aureus* in the urine (without urinary catheter or prior surgery) should prompt evaluation for bloodstream infection with blood cultures, especially if systemic signs/symptoms of infection
SCH Case 5

• 60 yo WM presented with fevers, chills, and back pain.
• Blood and Urine cultures on admission were positive for MRSA.
• Diagnosis – MRSA bacteremia secondary to UTI
• Discharge regimen – oral Bactrim

Questions? Concerns?

Clinical course
• Returns 6 weeks later to another facility with persistent back pain and LE weakness, neurogenic bladder
• Diagnosed with epidural abscess, taken to OR for decompression

Factors that can affect blood culture interpretation

• Clinical pre-test probability of bloodstream infection
• Influence of blood culture contaminant rate at each facility
• Blood culture interpretation
 • Interpretation of S. aureus from single site
 • Interpretation of “GPCs” from single vs. multiple sites
• Patient showing clinical improvement despite not receiving IV antibiotics for S. aureus bacteremia
Teaching Points/Summary

- Significance of “GPCs” on blood culture result
 Depends on pre-test probability/number of positive cultures
- *S. aureus* rarely a contaminant
 - High morbidity/complication risk
 - Positive urine culture may represent hematogenous source
 - Document clearance of bacteremia
 - Typically requires minimum of 14 days of targeted IV ABX therapy
 [Longer duration (4-8 weeks) if other clinical factors]

Final Pop Quiz:
Which of the following is likely to be a contaminant in blood?

- *S. aureus*
- *Candida*
- *S. pneumoniae*
- *Pseudomonas*
- *Enterobacteriaceae* (e.g. *E.coli, K.pneumoniae*)
- *Mycobacteria*
Predictive value of positive blood culture

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Total Isolates</th>
<th>True Bloodstream Infection</th>
<th>Contaminant</th>
<th>Unknown Clinical Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>a</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Coagulase-negative staphylococci</td>
<td>1005</td>
<td>105</td>
<td>10</td>
<td>828</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>338</td>
<td>315</td>
<td>93</td>
<td>4</td>
</tr>
<tr>
<td>Enterococcus spp.*</td>
<td>293</td>
<td>128</td>
<td>63</td>
<td>23</td>
</tr>
<tr>
<td>Viridans group streptococci</td>
<td>98</td>
<td>29</td>
<td>30</td>
<td>54</td>
</tr>
<tr>
<td>Streptococcus pneumonia</td>
<td>28</td>
<td>2b</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>β-hemolytic streptococci</td>
<td>52</td>
<td>31</td>
<td>93</td>
<td>0</td>
</tr>
<tr>
<td>Corynebacterium spp.</td>
<td>86</td>
<td>7</td>
<td>8</td>
<td>76</td>
</tr>
<tr>
<td>Bacillus spp.</td>
<td>33</td>
<td>0</td>
<td>9</td>
<td>33</td>
</tr>
<tr>
<td>Micrococcus spp.</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Lactobacillus spp.</td>
<td>50</td>
<td>6</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>Other Gram-positive bacteria</td>
<td>12</td>
<td>3</td>
<td>23</td>
<td>9</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>175</td>
<td>170</td>
<td>97</td>
<td>1</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>118</td>
<td>112</td>
<td>95</td>
<td>1</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>66</td>
<td>43</td>
<td>93</td>
<td>0</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>42</td>
<td>39</td>
<td>93</td>
<td>0</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>25</td>
<td>25</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Other Enterobacteriaceae</td>
<td>62</td>
<td>62</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>52</td>
<td>50</td>
<td>96</td>
<td>2</td>
</tr>
<tr>
<td>Stenotrophomonas maltophilia</td>
<td>11</td>
<td>8</td>
<td>73</td>
<td>0</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>15</td>
<td>10</td>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td>Other Gram-negative bacteria</td>
<td>22</td>
<td>12</td>
<td>55</td>
<td>5</td>
</tr>
<tr>
<td>Clostridium spp.</td>
<td>25</td>
<td>16</td>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>Propionibacterium spp.</td>
<td>35</td>
<td>1</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td>Peptostreptococcus spp.</td>
<td>13</td>
<td>5</td>
<td>38</td>
<td>4</td>
</tr>
<tr>
<td>Other Gram-positive anaerobic bacteria</td>
<td>4</td>
<td>3</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td>Bacteroides spp.</td>
<td>35</td>
<td>34</td>
<td>97</td>
<td>0</td>
</tr>
<tr>
<td>Other Gram-negative anaerobic bacteria</td>
<td>8</td>
<td>7</td>
<td>88</td>
<td>0</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>46</td>
<td>45</td>
<td>98</td>
<td>0</td>
</tr>
<tr>
<td>Candida glabrata</td>
<td>32</td>
<td>32</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Other Candida spp.*</td>
<td>30</td>
<td>30</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Other fungi</td>
<td>7</td>
<td>5</td>
<td>71</td>
<td>1</td>
</tr>
<tr>
<td>Microaerobacter spp.*</td>
<td>7</td>
<td>7</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>All microorganisms</td>
<td>2668</td>
<td>1364</td>
<td>51</td>
<td>1101</td>
</tr>
</tbody>
</table>

Am J Med 2010;123:819

Questions?

Intermountain Healthcare
Contact information: (ID Telehealth Service)

Infectious Diseases On-Call* (SCORE) Line:
• 801.50.SCORE (801.507.2673)
• (24/7/365 availability)

Todd Vento (Medical Director)
• Cell: 210.589.5418
• Desk: 801.507.9344
• todd.vento@imail.org

John Veillette (ID Tele-Pharmacist)
• Cell: 385.228.9549
• Desk: 801.507.9340
• john.veillette@imail.org

*On Call for all Intermountain Small Community Hospitals;
Separate on-call services for Medical Centers: IMC/LDSH/McKay-Dee/Utah Valley/Dixie

SCH Case 2

20 y/o M (chronic neuro condition requiring leg braces) presents to ED on 5/22 with bilateral foot ulcers draining purulent material and surrounding cellulitis
- T 37, HR 106, RR 16, BP 161/87; WBC 13,
- blood cultures drawn x2 sets + abscess culture;
- discharged on Augmentin (amoxicillin/clavulanate)

Micro Data (date of result)
5/22 Abscess cx – 4+ MSSA
Blood cx drawn
5/22
Set 1 – GPC clusters, 1/2 bottles
Set 2 – GPC clusters, 1/2 bottles
5/23 and 5/24
MSSA, 3/4 total bottles

Clinical course
- 5/25 Readmitted to hospital for IV abx