Don't be "SILI": Understanding Patient Self-Induced Lung Injury (P-SILI)

Peter Crossno MD

Medical Director- Schmidt Chest Clinic and Respiratory Care
Intermountain Medical Center

- Disclosures
 - Consulting fee Boerhinger Ingleheim
 - IPCE has mitigated all relevant financial relationships
- Slides and figures used for presentation are available from the public domain.

Case Presentation

- 61 yo previously healthy man, who is an active runner and recently returned from a trip to Florida, presented to IMC with 4 days of fevers and progressive shortness of breath.
- ED visit documented initial SaO2 70% on RA, Tm 39.9 degrees C, HR 86 BP 85/49, f 25 normal WBC and an elevated CRP of 26.7
- 3rd COVID test was reported positive.
- CXR performed in ED

- Given hypoxia, early fears of aerosolization of SARS-CoV 2 virus, the patient was emergently intubated in the ED
 - Low VT protocol 6 ml/kg
 - PEEP 8 FiO2 60%
 - Prone ventilation initiated
- Despite deep sedation, RASS -4, the patient maintained a high WOB (f 28-38) with PEEP range 14-20 cm H20 with FiO2 60-100%. Over following 10 days
 - Pplat ~ 24-33 cm H20
 - Ppeak ~25-49 cm H20
- ${f \cdot}$ Rocuronium pushes employed intermittently during ${f 1}^{st}$ ten days for refractory hypoxemia
- iNO initiated at day 10 w/ improvement in oxygenation

- Day 0-21 The patient remained intubated
- Day 22 extubation
- Day 25 required reintubation, resumed LVT protocol
- Day 28 Tracheostomy tube placement
- Day 29 A CXR then HRCT were performed...

Objectives

- Understanding the mechanics of breathing
 - Relationship of intrapleural pressure and airway pressures
 - During spontaneous breathing
 - During mechanical ventilation
- Understanding Volume and pressure changes in the lung (Boyle's gas law)
- Understanding the mechanics of breathing in the injured lung
 - ARDS
 - Pendelluft Effect
- Analyzing P-SILI and where it may fit in our understanding of lung injury
- Understanding how P-SILI and VILI differ
- Understand how to recognize and hopefully avoid P-SILI

Understanding the Mechanics of Breathing

- Movement of gas in and out of the lung is a function of a biomechanical system and simple physics
 - Quiet Inhalation
 - Active diaphragm and external intercostal muscles
 - Quiet Exhalation
 - Passive (allow muscle groups to relax)
 - Forced inhalation (active)
 - the diaphragm
 - external intercostal muscles
 - accessory respiratory muscles:
 - activated when respiration increases significantly
 - Forced exhalation (active)
 - accessory respiratory muscles:
 - activated when respiration increases significantly

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Muscles of Breathing				
Muscles of quiet breathing	The diaphragm forms the rounded "floor" of the thoracic cavity and is dome-shaped when relaxed. It alternates between the relaxed domed position and the contracted flattened position and changes the vertical dimensions of the thoracic cavity. The external intercostals extend from a superior rib inferiomedially to the adjacent inferior rib. These elevate the ribs and increase the transverse dimensions of the thoracic cavity.			
Muscles of forced inspiration	The sternocleidomastoid attaches to sternum and clavicle; lifts rib cage. The scalenes attach to ribs 1 and 2; elevates ribs 1 and 2. The pectoralis minor attaches to ribs 3–5; elevates ribs 3–5. The serratus posterior superior attaches to ribs 2–5 on its anterior surface; lifts ribs 2–5. The erector spinae is a group of deep muscles along the length of the vertebral column; extends the vertebral column.			
Muscles of forced expiration	The internal intercostals lie deep and at right angles to the external intercostals; depress the ribs and decrease the transverse dimensions of the thoracic cavity. The abdominal muscles (primarily the external obliques and transversus abdominis) compress the abdominal contents, forcing the diaphragm into a higher domed position and the rectus abdominus pulls the sternum and rib cage inferiorly. The transversus thoracis extends across the inner surface of the thoracic cage and attaches to ribs 2–6; depresses ribs 2–6. The serratus posterior inferior extends between the ligamentum nuchae and the lower border of ribs 9–12; depresses ribs 9–12.			

Movement of Gas in/out of the lungs is a function of Volume and Pressure

Boyle's Law

- At a constant temperature, the pressure (P) of a gas decreases if the volume (V) of the container increases, and vice versa
- P_1 and V_1 represent the initial conditions and P_2 and V_2 the changed conditions
- $P_1V_1 = P_2V_2$
- Inverse relationship between gas pressure and volume

Pressure gradients of the respiratory system

Gradient name	Abbreviation	Formula	Clinical assessment
Transpulmonary pressure	PL	Pao - Pp1	Paw – Pes
Transalveolar pressure/elastic recoil pressure of the lung	Pel(L)	Palv – Ppl	Paw (zero flow) – Pes
Transdiaphragmatic pressure	Pdi	Pab - Ppl	Pga – Pes
Pressure gradient over the chest wall	Pcw	Ppl – Pbs	Pes (as Pbs is conventionally 0)
Pressure gradient over the respiratory system	Prs	Pao – Pbs	Paw (as Pbs is conventionally 0)

Pab, abdominal pressure; Pao, pressure at airway opening; Palv, alveolar pressure; Pbs, pressure at body surface; Ppl, pleural pressure; Paw, airway pressure; Pes, esophageal pressure; Pga, gastric pressure.

De Vries H et al Ann Transl Med 2018

No breathing:

- atmospheric pressure equals intrapulmonary pressure ie 760mm Hg
- intrapleural pressure is below 760mm Hg
- -Patm=Paw>Ppl

with Inhalation:

- Alveolar volume increases
- Alveolar pressure decreases
- intrapulmonary pressure drops to 759mm Hg
- intrapleural pressure drops to 754mm Hg
- -Patm>Paw>Ppl

Quiet inspiration

atmospheric pressure; air flows in Air flows in atm = (~500 mL per 760 mm Hg quiet breath) Pleural cavity volume increases Intrapleural pressure 754 mm Hg decreases 759 mm Hg Alveolar volume increases Intrapulmonary pressure decreases

Spontaneous (Negative pressure) Ventilation vs Positive Pressure Ventilation

Consequences of "too much" negative Pleural Pressure in spontaneous breathing

- Good Example
 - Negative pressure pulmonary edema
 - Generation of large amount of negative Ppl results in dramatic shift in PL resulting alveolar epithelial injury and capillary leak (from large increase in transvascular pressure)

Important factors impacting ventilation

- Lung Compliance
 - a measure of the <u>lung</u>'s <u>ability to stretch and</u> <u>expand</u> (distensibility of elastic tissue).
- Static and dynamic pressures are reflections of static and dynamic lung compliance
- Measured lung compliance is an "average"
- Lungs are heterogeneous, thus regional lung compliance varies, especially in ARDS

$$\text{Compliance} = \frac{\Delta V}{\Delta P}$$

$$C_{stat} = rac{V_T}{P_{plat} - PEEP}$$

$$C_{dyn} = rac{V_T}{PIP - PEEP}$$

ARDS

Berlin Criteria for Acute Respiratory Distress Syndrome (ARDS)

Respiratory symptoms must have begun within one week of a known clinical insult OR the patient must have new or worsening symptoms during the past week.

Bilateral opacities consistent with pulmonary edema must be present on a chest radiograph or computed tomographic (CT) scan.

These opacities must not be fully explained by pleural effusions, lobar collapse, lung collapse, or pulmonary nodules

A moderate to severe impairment of oxygenation must be present, as defined by the ratio of arterial oxygen tension to fraction of inspired oxygen (PaO₂/FiO₂). The severity of the hypoxemia defines the severity of the ARDS:

- Mild ARDS The PaO₂/FiO₂ is > 200 mm Hg, but ≤ 300 mm Hg, on ventilator settings that include positive end-expiratory pressure (PEEP) or continuous positive airway pressure (CPAP) ≥ 5 cm H₂O.
- Moderate ARDS The PaO₂/FiO2 is > 100 mm Hg, but ≤ 200 mm Hg, on ventilator settings that include PEEP ≥ 5 cm H₂O.
- Severe ARDS The PaO₂/FiO2 is ≤ 100 mm Hg on ventilators setting that include PEEP ≥ 5 cm H₂O.

ARDS as a disease of heterogenous lung compliance

Prone Positioning

- Improves perfusion to the lungs → better VQ matching
- Heart shifts forward → improved compliance
- Improved lung recruitment
- Lung protective

Pendelluft Effect in ARDS

- Inhomogeneous inflation or deflation of the lungs causing dynamic pressure difference between lung regions leading to interregional airflows
- Occurs when regions of the lung have different dynamics of regional inflation and deflation

Spontaneous Breathing during Mechanical Ventilation

- Normal lungs can tolerate short periods of large volume swings
 - Transpulmonary pressure (PL) swings are distributed throughout the lung
 - Homogeneous ventilation can be achieved
- Injured lung does not tolerate large volume swings
 - Regional increases in PL can result or perpetuate lung injury
 - Ventilation in injured lung is heterogeneous

So, what is P-SILI and why are we talking about it now?

- P-SILI is a hypothetical, somewhat controversial mechanism by which intense, patient triggered inspiratory effort results in large swings in transpulmonary pressures
- Regional shift in transpulmonary pressure may aggravate lung injury
- The peculiar phenotypes of COVID 19 associated respiratory failure/ARDS has offered increased insight into the evolution of lung injury
- P SILI, in tandem with VILI (via mechanical ventilator induced volutrauma and barotrauma) may accentuate lung injury

COVID 19 and P-SILI

Phenotypic differences in ARDS from COVID 19 are distinct

Fig. 1 Principles of lung and diaphragm-protective ventilation. ΔP: change in airway pressure during inspiration; PEEP: positive end-expiratory pressure; P-SILI: patient self-inflicted lung injury; VILI: ventilator-induced lung injury; V_T: tidal volume

Physiologic effects of P-SILI

- Large swings in transpulmonary pressures (increased lung stress)
- Abnormal increase in transvascular pressures
- Pendelluft
- Diaphragmatic injury weakness
- Increased lung inflammation

Ventilator Induced Lung Injury (VILI) vs P-SILI

• VILI

- Composite lung injury consisting of pulmonary barotrauma, volutrauma, atelectrauma and biotrauma occurring during applied mechanical ventilation
 - Excessive tidal volumes
 - Excessive driving pressures (Pplat- PEEP)
 - Mechanical shear (atelectrauma) or recurrent "derecruitment"
 - Mechanical cellular injury leading to or propagating a systemic inflammatory response

P-SILI

- May occur in spontaneous breathing or mechanical ventilation (invasive and noninvasive)
- Injury is a result of increase transpulmonary pressures
- Transcapillary and transpulmonary pressures increase capillary leak and ultimately contribute to further "biotrauma"

Recognizing P-SILI

- As a consequence of patient effort/respiratory drive
 - Inspiratory effort is proportional to CO2 and negatively proportional to pH
 - Objective assessment of respiratory effort
- As a consequence of ventilator dysynchrony
 - Breath stacking
 - Double triggering
 - Excessive inspiratory times

Assessing Respiratory Effort

- Physical Exam
 - Increased respiratory rate
 - Anterior scalenus, Platysmus retractions
 - Intercostal muscle retractions
 - Paradoxical abdominal contractions
 - Grimacing
- Objective measures
 - Difficult to quantify without specific pressure measurements
 - Pressure amplitudes
 - Lower esophageal and gastric pressure measurement
 - Electromyelographic method
 - Ultrasound assessment

Preventing P-SILI

- The RT has a critical role to play
 - For spontaneous breathing patients
 - Appropriate timing of respiratory assist
 - Recognize with patient effort is high
 - Avoid Auto-PEEP
 - For magnitude of assist
 - Avoid unnecessary Pressure support/IPAP
 - Target low VT goals (6 ml/kg)
 - Avoid breath stacking and double triggering during assisted modes (PRVC, VC, PC)
 - Favor HFNC where appropriate
 - Avoid overuse of BiLevel NIPPV for hypoxemia
 - Understand Airway Occlusion Pressure (P0.1) and how it can help you in mechanically ventilated patients

Airway Occlusion Pressure (P0.1)

- P0.1 is the pressure generated at the airways during the first 100 msec of an inspiratory effort against an occluded airway
- P0.1vent correlates with inspiratory effort as suggested by Pes.
- P0.1 3.5-4.0 cm H20 suggests excessive insp. Effort
- P0.1 ~1 cm H20 is considered low
- P0.1 can be variable and multiple (~5 sequential)
 measurements are recommended
- P0.1 is not necessarily tied to clinical outcomes
- Measurement of P0.1 may be a "bellwether" as to excessive inspiratory effort during mechanical ventilation.

Summary

- Patient self-induced lung injury (P-SILI) is a plausible mechanism for possible development and perpetuation lung injury
- Understanding of the mechanics of breathing are fundamental to understanding the P-SILI concept
- ARDS and specifically COVID19-associated ARDS have offered interesting insights into the role of P-SILI
- Objective measurement of respiratory effort is technically challenging
- Measurement and understanding of Airway Occlusion Pressure (P0.1)
 may be a tool to aid in evaluating for excessive inspiratory effort and
 risk of P-SILI in our mechanically ventilated patients.